Меню Рубрики

Кинетика вулканизации определение. Способ управления процессом вулканизации Технология горячей вулканизации шин своими руками

1. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПОСТАНОВКА ЗАДАЧИ ИССЛЕДОВАНИЯ.

1.1. Вулканизация элементарной серой.

1.1.1. Взаимодействие серы с ускорителями и активаторами.

1.1.2. Вулканизация каучука серой без ускорителя.

1.1.3. Вулканизация каучука серой в присутствии ускорителя.

1.1.4. Механизм отдельных стадий серной вулканизации в присутствии ускорителей и активаторов.

1.1.5. Вторичные реакции полисульфидных поперечных связей. Явления поствулканизации (перевулканизации) и реверсии.

1.1.6. Кинетическое описание процесса серной вулканизации.

1.2. Модификация эластомеров химическими реагентами.

1.2.1. Модификация фенолами и донорами метиленовых групп.

1.2.2. Модификация полигалоидными соединениями.

1.3. Структурирование циклическими производными тиомочевины.

1.4 Особенности структуры и вулканизации смесей эластомеров.

1.5. Оценка кинетики неизотермической вулканизации в изделиях.

2. ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. Объекты исследования

2.2. Методы исследования.

2.2.1. Исследование свойств резиновых смесей и вулканизатов.

2.2.2. Определение концентрации поперечных связей.

2.3. Синтез гетероциклических производных тиомочевины.

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ И ОБСУЖДЕНИЕ

РЕЗУЛЬТАТОВ

3.1. Изучение кинетических особенностей формирования вулканизационной сетки под действием серных вулканизующих систем.

3.2. Влияние модификаторов на структурирующее действие серных вулканизующих систем.

3.3 Кинетика вулканизации резиновых смесей на основе разнополярных каучуков.

3.4. Проектирование процессов вулканизации эластомерных изделий.

Рекомендованный список диссертаций

  • Разработка и исследование свойств резин на основе полярных каучуков, модифицированных полигидрофосфорильными соединениями, для изделий нефтебуровой техники 2001 год, кандидат технических наук Куцов, Александр Николаевич

  • Ингредиенты полифункционального действия на основе азометинов для технических резин 2010 год, доктор технических наук Новопольцева, Оксана Михайловна

  • Получение, свойства и применение эластомерных композиций, вулканизованных динитрозогенерирующими системами 2005 год, кандидат технических наук Макаров, Тимофей Владимирович

  • Физико-химическое модифицирование поверхностных слоев эластомеров при формировании композиционных материалов 1998 год, доктор технических наук Елисеева, Ирина Михайловна

  • Развитие научных основ технологии по созданию и переработке обувных термопластичных резин методом динамической вулканизации 2007 год, доктор технических наук Карпухин, Александр Александрович

Введение диссертации (часть автореферата) на тему «Исследование кинетики вулканизации диеновых каучуков комплексными структурирующими системами»

Качество резиновых изделий неразрывно связано с условиями формирования в процессе вулканизации оптимальной структуры пространственной сетки, позволяющей максимально реализовать потенциальные свойства эластомерных систем. В работах Б. А. Догадкина, В. А. Шершнева, Е. Э. Потапова, И. А. Туторского, JI. А. Шуманова, Тарасовой З.Н., Донцова A.A., W. Scheele, A.Y. Coran и др. ученых установлены основные закономерности течения процесса вулканизации, основанные на существовании сложных, параллельно-последовательных реакций сшивания эластомеров с участием низкомолекулярных веществ и активных центров - действительных агентов вулканизации.

Актуальными являются работы, продолжающие это направление, в частности в области описания вулканизационных характеристик эластомерных систем, содержащих комбинации ускорителей, агентов вулканизации, вторичных структурирующих агентов и модификаторов, совулканизации смесей каучуков. Различным подходам в количественном описании сшивания каучуков уделено достаточно внимания, однако изыскание схемы, которая максимально учитывает теоретическое описание кинетики действия структурирующих систем и экспериментальные данные заводских лабораторий, полученные в различных температурно-временных условиях, является актуальной задачей.

Это обусловливается большой практической значимостью методов расчета скорости и параметров процесса неизотермической вулканизации эластомерных изделий, в том числе методом компьютерного проектирования по данным ограниченного лабораторного эксперимента. Решение проблем, позволяющих достигать оптимальные эксплуатационные свойства в ходе производственных процессов вулканизации шин и резинотехнических изделий, в значительной степени зависит с совершенствованием методов математического моделирования неизотермической вулканизации применяемых в системах автоматизированного управления.

Рассмотрение проблем серной вулканизации, определяющих физико-химические и механические свойства вулканизатов, касающиеся кинетики и механизма реакции формирования и распада структуры поперечных связей вулканизационной сетки имеет очевидное практическое значение для всех специалистов связанных с переработкой каучуков общего назначения.

Возросший уровень упруго - прочностных, адгезионных свойств резин, диктуемый современными тенденциями в конструировании, не может быть достигнут без широкого применения в рецептуре модификаторов полифункционального действия, являющихся, как правило, вулканизующими соаген-тами, оказывающих влияние на кинетику серной вулканизации, характер образующейся пространственной сетки.

Исследование и расчет процессов вулканизации в настоящее время базируется во многом на экспериментальном материале, эмпирических и графоаналитических методах расчетов, которые до настоящего времени не нашли достаточного обобщенного анализа. Во многих случаях вулканизацион-ная сетка образована химическими связями нескольких типов неоднородно распределенными между фазами. В тоже время сложные механизмы межмолекулярного взаимодействия компонентов с образованием физических, координационных и химических связей, образования нестабильных комплексов и соединений, крайне осложняют описание процесса вулканизации, приводя многих исследователей к построению аппроксимаций для узких интервалов варьирования факторов.

Целью работы является исследование, уточнение механизма и кинетики нестационарных процессов, протекающих при вулканизации эластомеров и их смесей, разработка адекватных методов математического описания процесса вулканизации многокомпонентными модифицирующими структурирующими системами, в том числе шин и многослойных резинотехнических изделий, установление факторов, влияющих на отдельные стадии процесса в присутствии вторичных структурирующих систем. Разработка на этой основе методик вариантно-оптимизационных расчетов вулканизационных характеристик композиций на основе каучуков и их комбинаций, а также параметров их вулканизации.

Практическая значимость. Многокритериальная задача оптимизации впервые сводится к решению обратной кинетической задачи с применением 6 методов планирования кинетических экспериментов. Разработаны модели, позволяющие целенаправленно оптимизировать состав структурно-модифицирующих систем конкретных шинных резин и достигать максимальный уровень упруго-жесткостных свойств в готовых изделиях.

Научная новизна. Многокритериальная задача оптимизации процесса вулканизации и прогнозирования качества готовой продукции предлагается решения обратной химической задачи с применением методов планирования кинетических экспериментов. Определение параметров процесса вулканизации позволяет эффективно проводить управление и регулирование в нестационарной области

Апробация работы проводилась на Российских научных конференциях в Москве (1999), Екатеринбурге (1993), Воронеже (1996) и научно-технических конференциях ВГТА 1993-2000 годов.

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

  • Моделирование неизотермической вулканизации автомобильных шин на основе кинетической модели 2009 год, кандидат технических наук Маркелов, Владимир Геннадьевич

  • Физико-химические основы и активирующие компоненты вулканизации полидиенов 2012 год, доктор технических наук Карманова, Ольга Викторовна

  • Шунгит - новый ингредиент для резиновых смесей на основе хлорсодержащих эластомеров 2011 год, кандидат химических наук Артамонова, Ольга Андреевна

  • Экологическая оценка и способы снижения эмиссии ускорителей серной вулканизации каучуков в производстве резиновых изделий 2011 год, кандидат химических наук Закиева, Эльмира Зиряковна

  • Вулканизация резиновых смесей с использованием оксидов металлов различного типа и качества 1998 год, кандидат технических наук Пугач, Ирина Геннадьевна

Заключение диссертации по теме «Технология и переработка полимеров и композитов», Молчанов, Владимир Иванович

1. Теоретически и практически обоснована схема, описывающая закономерности серной вулканизации диеновых каучуков, на основе дополнения известных уравнений теории индукционного периода реакциями образования, деструкции полисульфидных связей и модификации макромолекул эластомеров. Предложенная кинетическая модель позволяет описать периоды: индукционный, сшивания и реверсии вулканизации резин на основе изопренового и бутадиеновых каучуков и их комбинаций в присутствии серы и сульфенамидов, влияние температуры на модули вулканизатов.

2. Рассчитаны константы и энергии активации всех стадий процесса серной вулканизации в предложенной модели путем решения обратных кинетических задач полиизотермным методом, и отмечено их хорошее совпадение с литературными данными полученными другими методами. Соответствующий выбор параметров модели позволяет описать с ее помощью основные типы кинетических кривых.

3. На основе анализа закономерностей образования и деструкции сетки поперечных связей дано описание зависимости скорости процесса вулканизации эластомерных композиций от состава структурирующих систем.

4. Определены параметры уравнений предложенной схемы реакций для описания серной вулканизации в присутствии модификатора РУ и гексола. Установлено, что с увеличением относительной концентрации модификаторов возрастает содержание и скорость образования стабильных поперечных связей. Использование модификаторов не оказывает значимого влияния на образование полисульфидных связей. Скорость распада полисульфидных узлов вулканизационной сетки не зависит от концентрации компонентов структурирующей системы.

5. Установлено, что зависимости крутящего момента, измеренного на реометре, и условного напряжения при низких удлинениях от соотношения полихлоропренового и бутадиен-стирольного каучуков в эластомерных композициях свулканизованных, наряду с металлооксидной, серной вулканизующими системами, не всегда могут быть описаны гладкой кривой. Лучшая оценка зависимости условного напряжения от соотношения фаз каучуков в композиции, полученной при использовании в качестве ускорителя альтакса, описывается кусочно-непрерывной аппроксимацией. При средних значениях объемных соотношений фаз (а = 0,2 - 0,8) использовано уравнение Дэвиса для взаимопроникающих полимерных сеток. При концентрациях ниже порога перколяции (а =0,11 - 0,19) эффективные модули композиции вычисляли по уравнению Такаянаги основанному на представлении о параллельном расположении анизотропных элементов дисперсной фазы в матрице.

6. Показано, что циклические производные тиомочевины увеличивают число связей на границе раздела эластомерных фаз, условное напряжение при удлинении композиции и изменяют характер зависимости модуля от соотношения фаз по сравнением с альтаксом. Лучшая оценка концентрационной зависимости условного напряжения получена с использовании логистической кривой при низкой плотности поперечных связей и логарифмической кривой - при высоких.

8. Разработаны модульные программы для расчета кинетических констант по предложенным моделям, расчета температурных полей и степени вулканизации в толстостенных изделиях. Разработанный пакет программ позволяет выполнять расчеты технологических режимов вулканизации на стадии проектирования изделия и создания рецептур.

9. Разработаны методики расчета процессов нагрева и вулканизации многослойных резиновых изделий по вычисленным кинетическим константам предложенных кинетических моделей вулканации.

Точность совпадения расчетных и экспериментальных данных соответствует предъявляемым требованиям.

Список литературы диссертационного исследования кандидат химических наук Молчанов, Владимир Иванович, 2000 год

1. Догадкин Б.А., Донцов A.A., Шершнев В.А. Химия эластомеров.1. М.:Химия, 1981.-376 с.

2. Донцов A.A. Процессы структурирования эластомеров.- М.:Химия,1978.-288 с.

3. Кузьминский A.C., Кавун С.М., Кирпичев В.П. Физико-химическиеосновы получения, переработки и применения эластомеров.-М.:Химия, 1976.- 368 с.

4. Шварц А.Г., Фроликова В.Г., Кавун С.М., Алексеева И.К. Химическая модификация резин // В сб. научн. трудов "Пневматические шины из синтетического каучука" -М.: ЦНИИТЭнефтехим.-1979.- С.90

5. Мухутдинов А. А. Модификация серных вулканизующих системи ихкомпонентов: Тем. обзор.-М.:ЦНИИТЭнефтехим.-1989.-48 с.

6. Гаммет Л. Основы физической органической химии.1. М.:Мир, 1972.- 534 с.

7. Гофманн В. Вулканизация и вулканизующие агенты.-Л.: Химия,1968.-464 с.

8. Campbell R. Н., Wise R. W. Vulcanization. Part 1. Fate of Curing

9. System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives//Rubber Chem. and Technol.-1964.-V. 37, N 3.- P. 635-649.

10. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Материалы и технология резиновогопроизводства.- М.,1984. Препринт А4930 (Межд. конф. по каучукуи резине. Москва, 1984 г.)

11. Sheele W., Kerrutt G. Vulcanization of Elastomers. 39. Vulcanization of

12. Natural Rubber and Synthetic Rubber by Sulfer and Sulfenamide. II //Rubber Chem. and Technol.-1965.- V. 38, N 1.- P.176-188.

13. Кулезнев B.H. // Коллоид, журнал.- 1983.-T.45.-N4.-C.627-635.

14. MoritaE., Young E. J. //Rubber Chem. and TechnoL-1963.-V. 36, N 4.1. P. 834-856.

15. Лыкйн A.C. Исследование влияния структуры вулканизационной сетки на эластичность и прочностные свойства резин// Коллоид.журнал.-1964.-Т.ХХУ1.-М6.-С.697-704.

16. Донцов A.A., Тарасова З.Н., Шершнев В.А. // Коллоид, журнал.1973.-T.XXXV.- N2.-C.211-224.

17. Донцов A.A., Тарасова З.Н., Анфимов Б.Н., Ходжаева И.Д. //Докл.

18. АН CCCP.-1973.-T.213.-N3.-C.653 656.

19. Донцов A.A., ЛякинаС.П., Добромыслова A.B. //Каучук и резина.1976.-N6.-C.15-18.

20. Донцов A.A., Шершнев В.А. Коллоидно-химические особенности вулканизации эластомеров. // Журн. Всес. хим. общ. им. Д.И.Менделеева, 1986.-T.XXXI.-N1.-C.65-68.

21. Мухутдинов А.А., Зеленова В.Н. Использование вулканизующей системы в виде твердого раствора. // Каучук и резина. 1988.-N7.-С.28-34.

22. Мухутдинов А.А., Юловская В.Д., Шершнев В.А., Смольянинов С.А.

23. О возможности уменьшения дозировки оксида цинка в рецептуре резиновых смесей. // Там же.- 1994.-N1.-C.15-18.

24. Campbell R. Н., Wise R. W. Vulcanization. Part 2. Fate of Curing System During the Sulfer Vulcanization of Natural Rubber Accelerated by Benzotiazole Derivatives //Rubber Chem. and Technol.-1964.- V. 37, N 3.- P. 650-668.

25. ТарасовД.В., Вишняков И.И., Гришин B.C. Взаимодействие сульфенамидных ускорителей с серой в температурных условиях, моделирующих режим вулканизации.// Каучук и резина.-1991.-№5.-С 39-40.

26. Гонтковская В.Т., Перегудов А.Н., Гордополова И.С. Решение обратных задач теории неизотермических процессов методом экспоненциальных множителей / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.121-136

27. Butler J., Freakley Р.К. Effect of humidity and water content on the curebehavior of a natural rubber accelerated sulfer compounds // Rubber Chem. and Technol. 1992. - 65, N 2. - C. 374 - 384

28. Geiser M., McGill WJ Thiuram-Accelerated sulfer vulcanization. II. Theformation of active sulfurating agent. // J. Appl. Polym. Sci. 1996. - 60, N3. - C.425-430.

29. Bateman L. e.a. The Chemistry and Physics of Rubber-like Substances /N.Y.: McLaren & Sons., 1963,- P. 449-561

30. Sheele W., Helberg J. Vulcanization of Elastomers. 40.Vulcanization of

31. Natural Rubber and Synthetic Rubber with Sulfer in Presence of

32. Sulfenamides. Ill //Rubber Chem. and Technol.-1965.- V. 38, N l.-P. 189-255

33. Gronski W., Hasenhinde H., Freund В., Wolff S. High resolutionsolidstate 13C NMR studies of the crosslink structure in accelerated sulfer vulcanized natural rubber //Kautsch. und Gummi. Kunstst.-1991.- 44, № 2.-C. 119-123

34. Coran A.Y. Vulcanization. Part 5. The formation of crosslincs in the system: natural rubber-sulfer-MBT-zink ion // Rubber Chem. and Techn., 1964.- V.37.- N3. -P.679-688.

35. Шершнев В.А. О некоторых аспектах серной вулканизации полидиенов // Каучук и резина, 1992.-N3.-C. 17-20,

36. Chapman A.V. The influence of excess zink stearate on the chemistry ofsulfer vulkanization of natural rubber // Phosph.,Sulfer and Silicon and Relat. Elem.-1991.V.-58-59 №l-4.-C.271-274.

37. Coran A.Y. Vulcanization. Part 7. Kinetics of sulfer vulcanization of natural rubber in presence of delayed-action accelerators // Rubber Chem. and Techn., 1965.-V.38.-N1.-P.l-13.

38. Kok С. M. The effects of conpounding variables on the reversion orocess in the sulphur vulcanization of natural rubber. // Eur. Polum. J.",-1987, 23, №8, 611-615

39. Krejsa M.R., Koenig J.L. Solid state carbonCo NMR studiesof elastomers XI.N-t-bytil beztiazole sulfenamide accelerated sulfer vulcanizationof cis-polyisoprene at 75 MHz // Rubber Chem. and Thecnol.-1993.- 66,Nl.-C.73-82

40. Кавун С. M., Подколозина М.М., Тарасова З.Н. // Высокомол. соед.-1968.- Т. 10.-N8.-C.2584-2587

41. Вулканизация эластомеров. / Под ред. Аллигера Г., Сьетуна И. -М.: Химия, 1967.-С.428.

42. Blackman E.J., McCall Е.В. //Rubb. Chem. Technol. -1970. -V. 43, N 3.1. P. 651-663.

43. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

44. Nordsiek K.N. Rubber microstructure and reversion. "Rubber 87: Int.Rubber Conf., Harrogate,1-5 June,1987. Pap." London,1987, 15A/1-15A/10

45. Гончарова JI.T., Шварц А.Г. Общие принципы создания резин для интенсификации процессов шинного производства.// Сб. научн. трудов Пневматические шины из синтетического каучука.- М.-ЦНИИТЭнефтехим.-1979. С.128-142.

46. Yang Qifa Анализ кинетики вулканизации бутилкаучука.// Hesheng xiangjiao gongye = China Synth. Rubber Ind. 1993.- 16, №5. c.283 -288.

47. Ding R., Leonov A. J., Coran A.Y. A study of the vulcanization kinetics of in accelerated-sulfer SBR compound /.// Rubb. Chem. and Technol. 1996. 69, N1. - C.81-91.

48. Ding R., Leonov A. Y. A kinetic model for sulfur accelerated vulcanization of a natural rubber compound // J. Appl. Polym. Sci. -1996. 61, 3. - C. 455-463.

49. Аронович Ф.Д. Влияние вулканизационных характеристик на надежность интенсифицированных режимов вулканизации толстостенных изделий// Каучук и резина.-1993.-N2.-C.42-46.

50. Пиотровский К.Б., Тарасова З.Н. Старение и стабилизация синтетических каучуков и вулканизатов.-М.: Химия, 1980.-264 с.

51. Пальм В.А. Основы количественной теории органических реакций1. Л.-Химия.-1977.-360 с

52. Туторский И.А., Потапов Е.Э., Сахарова Е.В. Исследование механизма взаимодействия полихлоропрена с молекулярными комплексами диоксифенолов и гексаметилентетрамина. //

53. Материалы и технология резинового производства.- Киев., 1978. Препринт А18 (Межд. конф. по каучуку и резине. М.: 1978 .)

54. Туторский И.А., Потапов Е.Э., Шварц А.Г., Модификация резин соединениями двухатомных фенолов// Тем. обзор. М.: ЦНИИТЭ нефтехим, 1976.-82 С.

55. Кравцов Е.И., Шершнев В.А.,Юловская В.Д.,Мирошников Ю.П.// Коллоид. журнал.-1987.-Т.49ХЫХ.-М.-5.-С.1009-1012.

56. Туторский И.А., Потапов Е.Э., Шварц А.Г. Химическая модификация эластомеров М.-Химия 1993 304 с.

57. В.А. Шершнев, А.Г. Шварц, Л.И. Беседина. Оптимизация свойств резин, содержащих в составе вулканизующей группы гексахлорпараксилол и окись магния.//Каучук и резина, 1974, N1, С.13-16.

58. Чавчич Т.А., Богуславский Д.Б., Бородушкина Х.Н., Швыдкая Н.П. Эффективность использования вулканизующих систем, содержащих алкилфенолформальдегидную смолу и серу // Каучук и резина. -1985.-N8.-C.24-28.

59. Петрова С.Б., Гончарова Л.Т., Шварц А.Г. Влияние природы вулканизующей системы и температуры вулканизации на структуру и свойства вулканизатов СКИ-3 // Каучук и резина, 1975.-N5.-C.12-16.

60. Шершнев В.А., Соколова JI.B. Особенности вулканизации каучукагексахлорпараксилолом в присутствии тиомочевины и окислов металлов.//Каучук и резина, 1974, N4, С. 13-16

61. Крашенинников H.A., Пращикина A.C., Фельдштейн М.С. Высокотемпературная вулканизация непредельных каучуков тиопроизводными малеимида // Каучук и резина, 1974, N12, С. 16-21

62. Блох Г.А. Органические ускорители вулканизации и вулка-низующиесистемы для эластомеров.-Jl.: Химия.-1978.-240 с.

63. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

64. Kempermann Т. // Kautsch, und Gummi. Runsts.-1967.-V.20.-N3.-P.126137

65. Донская M.M., Гридунов И.Т Циклические производные тиомочевины- полифункциональные ингредиенты резиновых смесей // Каучук и резина.- 1980.-N6.- С.25-28.; Гридунов И.Т., Донская М.М., //Изв. вузов. Серия хим. и хим. технол., -1969. Т.12, С.842-844.

66. Мозолис В.В., Йокубайтите С.П. Синтез N-замещенных тиомочевин// Успехи химии Т. XLIL- вып. 7,- 1973.-С. 1310-1324.

67. Burke J. Sythesis of tetrahydro-5-substituted-2(l)-s-triazones// Jörn, of American Chem. Society/-1947.- V. 69.- N9.-P.2136-2137.

68. Гридунов И.Т., и др., // Каучук и резина.- 1969.-N3.-C.10-12.

69. Потапов A.M., Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1971.-Т.1.-вып.З,-С.178-182.

70. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С. 183-186.

71. Кучевский В.В.,Гридунов И.Т. //Изв. вузов. Серия хим. и хим.технол.,-1976. Т. 19, - вып.-1 .-С. 123-125.

72. Потапов A.M., Гридунов И.Т., и др. // Там же.- 1971.-Т.1.-вып.З,-С.183-186.

73. Потапов A.M., Гридунов И.Т., и др. // В кн. Химия и химическая технология.- М.- 1972.- С.254-256.

74. Кучевский В.В.,Гридунов И.Т. // Учен. зап. МИТХТ им. М.В. Ломоносова,-М.- 1972.-Т.2.-вып.1,-С.58-61

75. Казакова E.H., Донская М.М. ,Гридунов И.Т. // Учен. зап. МИТХТим. М.В. Ломоносова,-М.- 1976.-Т.6.- С. 119-123.

76. Кемперманн Т. Химия и технология полимеров.- 1963. -N6.-C.-27-56.

77. Кучевский В.В.,Гридунов И.Т. //Каучук и резина.- 1973.- N10.-C.19-21.

78. Борзенкова А.Я., Симоненкова Л.Б. // Каучук и резина.-1967.-N9.-С.24-25.

79. Эндрюс Л., Кифер Р. Молекулярные комплексы в органической химии: Пер. с англ. М.: Мир, 1967.- 208 с.

80. Татаринова Е.Л., Гридунов И.Т., Федоров А.Г., Унковский Б.В., Испытание резин на основе СКН-26 с новым ускорителем вулканизации пиримидинтионом-2. // Производство шин, РТИ и АТИ. M.-1977.-N1.-C.3-5.

81. Зуев Н.П., Андреев B.C., Гридунов И.Т., Унковский Б.В. Эффективность действия циклических пролизводных тиомочевин впокровных резинах легковых шин с белой боковиной //. "Производство шин РТИ и АТИ", М., ЦНИИТЭнефтехим, 1973.-№6 С. 5-8

82. Болотин А.Б., Киро З.Б., Пипирайте П.П., Симаненкова Л.Б. Электронная структура и реакционная способность производных этилентиомочевины// Каучук и резина.-1988.-N11-С.22-25.

83. Кулезнев В.Н. Смеси полимеров.-М.:Химия, 1980.-304 е.;

84. Тагер А.А. Физико-химия полимеров. М.: Химия, 1978. -544 с.

85. Нестеров А.Е., Липатов Ю.С. Термодинамика растворов и смесейполимеров.-Киев. Наукова думка, 1980.-260 с.

86. Нестеров А.Е. Справочник по физической химии полимеров. Свойства растворов и смесей полимеров. Киев. : Наукова думка, 1984.-Т. 1.-374 с.

87. Захаров Н.Д.,Леднев Ю.Н., Нитенкирхен Ю.Н.,Кулезнев В.Н. О роликоллоидно-химических факторов в создании двухфазных смесей эластомеров // Каучук и резина.-1976.-N1.-С. 15-20.

88. Липатов Ю.С. Коллоидная химия полимеров.-Киев: Наукова думка,1980.-260 с.

89. Шварц А.Г., Динсбург Б.Н. Совмещение каучуков с пластиками и синтетическими смолами.-М.:Химия, 1972.-224 с.

90. Мак-Донел Е., Береноул К., Эндриес Дж. В кн.: Полимерные смеси./Под ред.Д.Пола, С.Ньюмена.-М.:Мир,1981.-Т.2.-С.280- 311.

91. Lee B.L.,Singleton Ch. // J. Makromol.Sci.- 1983-84.- V. 22B.-N5-6.-P.665-691.

92. Липатов Ю.С. Межфазные явления в полимерах.-Киев: Наукова думка,1980.-260с.

93. Шутилин Ю.Ф. О релаксационно-кинетических особенностях струкутуры и свойств эластомеров и их смесей. // Высокомол. соед.-1987.-T.29A.-N8.-C. 1614-1619.

94. Ougizawa Т., Inowe Т., Kammer H.W. // Macromol.- 1985.-V.18.- N10.1. Р.2089-2092.

95. Hashimoto Т., Tzumitani Т. // Int. Rubber Conf.- Kyoto.-Oct.15-18,1985.-V.l.-P.550-553.

96. Takagi Y., Ougizawa Т., Inowe T.//Polimer.-1987.-V. 28. -Nl.-P.103-108.

97. Чалых A.E., Сапожникова H.H. // Успехи химии.- 1984.-Т.53.- N11.1. С.1827-1851.

98. Саборо Акияма//Сикудзай Кекайси.-1982.-Т.55-Ю.-С.165-175.

100. Липатов Ю.С. // Механика композ. матер.-1983.-Ю.-С.499-509.

101. Dreval V.E., Malkin A. Ya., Botvinnik G.O. // Jörn. Polimer Sei., Polymer Phys. Ed.-1973.-V.l 1.-P.1055.

102. Mastromatteo R.P., Mitchel J.M., Brett T.J. New accelerators for bleds of EPDM//Rubber Chem. and Technol.-1971.-V. 44, N 4.-P. 10651079.

103. Hoffmann W., Verschut C. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

104. Шершнев B.A., Пестов С.С. // Каучук и резина.-1979.-N9.-С. 11-19.

105. Пестов С.С., Кулезнев В.Н., Шершнев В.А. // Коллоид.журнал.-1978.-T.40.-N4.-C.705-710.

106. Hoffmann W., Verschut С. // Kautsch, und Gummi. Runsts.-1982.-V.35.-N2.-P.95-107.

107. Шутилин Ю.Ф. // Высокомол. coefl.-1982.-T.24B.-N6.-C.444-445.

108. Шутилин Ю.Ф. // Там же.-1981.-Т.23Б.-Ш0.-С.780-783.

109. Manabe S., Murakami М. // Intern. J. Polim. Mater.-1981.-V.l.- N1.-P.47-73.

110. Чалых A.E., Авдеев H.H.// Высокомол. соед.-1985.-Т.27А. -N12.-С.2467-2473.

111. Носников А.Ф. Вопросы химии и химической технологии.-Харьков.-1984.-N76.-C.74-77.

112. Запп P.JI. Образование связей на границе раздела между различными эластомерными фазами // В кн.: Многокомпонентные полимерные системы.-М.:Химия,1974.-С.114-129.

113. Лукомская А.И. Исследование кинетики неизотермической вулканизации: Тем. обзор.-М. .ЦНИИТЭнефтехим.-1985.-56 с.

114. Лукомская А.И. в сб.научн.трудов НИИШП "Моделирование механического и теплового поведения резинокордных элементов пневматических шин в производстве". М., ЦНИИТЭнефтехим, 1982, с.3-12.

115. Лукомская А.И., Шаховец С.Е., //Каучук и резина.- 1983.- N5,-С.16-18.

116. Лукомская А.И., Минаев Н.Т., Кеперша Л.М., Милкова Е.М. Оценка степени вулканизации резин в изделиях, Тематический обзор. Серия "Производство шин", М., ЦНИИТЭнефтехим, 1972.-67 с.

117. Лукомская А.И., Баденков П.Ф., Кеперша Л.М. Расчеты и прогнозирование режимов вулканизации резиновых изделий., М.:Химия, 1978.-280с.

118. Машков A.B., Шиповский И.Я. К расчету полей температур и степени вулканизации в резиновых изделиях методом модельной прямоугольной области // Каучук и резина.-1992.-N1.-С. 18-20.

119. Борисевич Г.М., Лукомская А.И., Исследование возможности повышения точности расчета температур в вулканизуемых покрышках//Каучук и резина.- 1974.-N2,-С.26-29.

120. Пороцкий В.Г., Савельев В.В., Точилова Т.Г., Милкова Е.М. Расчетное проектирование и оптимизация процесса вулканизации шин. //Каучук и резина.- 1993.- N4,-C.36-39.

121. Пороцкий В.Г., Власов Г. Я. Моделирование и автоматизация вулканизационных процессов в производстве шин. //Каучук и резина.- 1995.- N2,-С. 17-20.

122. Верне Ш.М. Управление производственным процессом и его моделирование // Материалы и технология резинового производства.- М.-1984. Препринт С75 (Межд. конф. по каучуку и резине. Москва, 1984 г.)

123. Lager R. W. Recuring vulcanizates. I. A novel way to study the mechanism of vulcanization // Rubber Chem. and Technol.- 1992. 65, N l.-C. 211-222

124. Журавлев В. К. Построение экспериментальных формально-кинетических моделей процесса вулканизации. // Каучук и резина.-1984.- №1.-С.11-13.

125. Sullivan A.B., Hann C.J., Kuhls G.H. Vulcanization chemistry. Sulfer, N-t-butil-2-benzotiazole sulfenamide formulations studied by highperformance liquid chromatography.// Rubber Chem.and Technol. -1992. 65, N 2.-C. 488 - 502

126. Simon Peter, Kucma Anton, Prekop Stefan Kineticka analyza vulranizacie gumarenskych zmesi pomocou dynamickej vykonovej kalorimetrie // Plasty a kauc. 1997. - 3-4, 4. - C. 103-109.

127. Таблицы планов эксперимента для факторных и полиномиальных моделей.- М.: Металлургия, 1982.-С.752

128. Налимов В.В., Голикова Т.Н., Логические основания планирования эксперимента. М.: Металлургия, 1981. С. 152

129. Химмельблау Д. Анализ процессов статистическими методами. -М.:Мир, 1973.-С.960

130. Saville В., Watson A.A. Structural characterization of sulfer-vulcanized rubber network.// Rubber Chem. and Technol. 1967. - 40, N 1. - P. 100 - 148

131. Пестов С.С., Шершнев В.А., Габибулаев И.Д., Соболев B.C. Об оценке густоты пространственной сетки вулканизатов смесей каучуков // Каучук и резина.-1988.-N2.-C. 10-13.

132. Ускоренный метод определения межмолекулярного взаимодействия в модифицированных эластомерных композициях / Седых В.А., Молчанов В.И. // Информ. лист. Воронежского ЦНТИ, № 152(41) -99. -Воронеж, 1999. С. 1-3.

133. Быков В.И. Моделирование критических явлений в химической кинетике.- М. Наука.:, 1988.

134. Молчанов В.И., Шутилин Ю.Ф. О методике оценки активности ускорителей вулканизации // Шестая российская научно практическая конференция резинщиков "Сырьё и материалы для резиновой промышленности. От материалов к изделиям. Москва, 1999.-С.112-114.

135. A.A. Левицкий, С.А. Лосев, В.Н. Макаров Задачи химической кинетики в автоматизированной системе научных исследований Авогадро. в сб.научн.трудов Математические методы в химической кинетике. Новосибирск: Наука. Сиб. отд-ние, 1990.

136. Молчанов В.И., Шутилин Ю.Ф., Зуева С.Б. Моделирование вулканизации с целью оптимизации и контроля состава рецептур резиновых смесей // Материалы XXXIV отчетной научной конференции за 1994 год. ВГТА Воронеж, 1994- С.91.

137. Э.А. Кюллик, М.Р. Кальюранд, М.Н. Коэль. Применение ЭВМ в газовой хроматографии.- М.: Наука, 1978.-127 С.

138. Денисов Е.Т. Кинетика гомогенных химических реакций. -М.: Высш. шк., 1988.- 391 с.

139. Хайрер Э., Нерсетт С., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Нежесткие задачи /Пер. с англ.-М.: Мир, 1990.-512 с.

140. Новиков Е.А. Численные методы решения дифференциальных уравнений химической кинетики / Математические методы в химической кинетике.- Новосибирск: Наук. Сиб. отделение, 1990. С.53-68

141. Молчанов В.И. Исследование критических явлений в совулканизатах эластомеров //Материалы XXXVI отчетной научной конференции за 1997 год: В 2 ч.ВГТА. Воронеж, 1998. 4.1. С. 43.

142. Молчанов В.И., Шутилин Ю.Ф. Обратная задача кинетики структурирования смесей эластомеров // Всероссийская научно-практическая конференция "Физико-химические основы пищевых и химических производств."- Воронеж, 1996 С.46.

143. Белова Ж.В., Молчанов В.И. Особенности структурирования резин на основе непредельных каучуков // Проблемы теоретической и экспериментальной химии; Тез. докл. III Всерос. студ. научн. конф Екатеринбург, 1993 - С. 140.

144. Молчанов В.И., Шутилин Ю.Ф. Кинетика вулканизации резиновых смесей на основе разнополярных каучуков // Материалы XXXIII отчетной научной конференции за 1993 год ВТИ Воронеж, 1994-С.87.

145. Молчанов В.И., Котырев С.П., Седых В.А.Моделирование неизотермической вулканизации массивных резиновых образцов //Материалы XXXVIII юбилейной отчетной научной конференции за 1999 год: в 3 ч. ВГТА. Воронеж, 2000. 4.2 С. 169.

146. Молчанов В.И., Седых В.А., Потапова Н.В. Моделирование образования и деструкции эластомерных сеток // Материалы XXXV отчетной научной конференции за 1996 год: В 2 ч. / ВГТА. Воронеж, 1997. 4.1. С.116.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Каучук, добываемый в природе, не всегда подходит для изготовления деталей. Это вызвано тем, что его природная эластичность очень низка, и очень зависит от внешней температуры. При температурах близких к 0, каучук становится твердым или при дальнейшем понижении он становится хрупким. При температуре порядка + 30 градусов каучук начинает размягчаться и при дальнейшем нагреве переходит в состояние расплава. При обратном охлаждении своих изначальных свойств он не восстанавливает.

Для обеспечения необходимых эксплуатационных и технических свойств резины в каучук добавляют различные вещества и материалы – сажу, мел, размягчители и пр.

На практике применяют несколько методов вулканизации, но их объединяет одно – обработка сырья вулканизационной серой. В некоторых учебниках и нормативных документах говорится о том, что в качестве вулканизирующих агентов могут быть использованы сернистые соединения, но на самом деле они могут считаться таковыми, только потому, что они содержат в себе серу. Иначе, они могут оказывать влияние вулканизацию ровно, так же как и остальные вещества, которые не содержат соединений серы.

Некоторое время назад, проводились исследования в отношении проведения обработки каучука органическими соединениями и некоторыми веществами, например:

  • фосфор;
  • селен;
  • тринитробензол и ряд других.

Но проведенные исследования показали, что никакого практической ценности эти вещества в части вулканизации не имеют.

Процесс вулканизации

Процесс вулканизации каучука можно разделить на холодный и горячий. Первый, может быть разделен на два типа. Первый подразумевает использование полухлористой серы. Механизм вулканизации с применением этого вещества выглядит таким образом. Заготовку, выполненную из натурального каучука, размещают в парах этого вещества (S2Cl2) или в ее растворе, выполненный на основе какого-либо растворителя. Растворитель должен отвечать двум требованиям:

  1. Он не должен вступать в реакцию с полухлористой серой.
  2. Он должен растворять каучук.

Как правило, в качестве растворителя можно использовать сероуглерод, бензин и ряд других. Наличие полухлористой серы в жидкости не дает каучуку растворяться. Суть этого процесса заключается в насыщении каучука этим химикатом.

Длительность процесса вулканизации с участием S2Cl2 в результате определяет технические характеристики готового изделия, в том числе эластичность и прочность.

Время вулканизации в 2% — м растворе может составлять несколько секунд или минут. Если процесс будет затянут по времени, то может произойти так называемая перевулканизация, то есть заготовки теряют пластичность и становятся очень хрупкими. Опыт говорит о том, что при толщине изделия порядка одного миллиметра операцию вулканизации можно проводить несколько секунд.

Эта технология вулканизации является оптимальным решением для обработки деталей с тонкой стенкой – трубки, перчатки и пр. Но, в этом случае необходимо строго соблюдать режимы обработки иначе, верхний слой деталей может быть вулканизирован больше, чем внутренние слои.

По окончании операции вулканизации, полученные детали необходимо промыть или водой, или щелочным раствором.

Существует и второй способ холодной вулканизации. Каучуковые заготовки с тонкой стенкой, помещают в атмосферу, насыщенную SO2. Через определенное время, заготовки перемещают в камеру, где закачан H2S (сероводород). Время выдержки заготовок в таких камерах составляет 15 – 25 минут. Этого времени достаточно для завершения вулканизации. Эту технологию с успехом применяют для обработки клееных швов, что придает им высокую прочность.

Специальные каучуки обрабатывают с применением синтетических смол, вулканизация с их использованием не отличается от той, что описана выше.

Горячая вулканизация

Технология такой вулканизации выглядит следующим образом. К отформованной из сырого каучука добавляют определенное количество серы и специальных добавок. Как правило, объем серы должен лежать в диапазоне 5 – 10% конечная цифра определяется исходя из предназначения и твердости будущей детали. Кроме серы, добавляют так называемый роговой каучук (эбонит), содержащий 20 – 50% серы. На следующем этапе происходит формование заготовок из полученного материала и их нагрев, т.е. вулканизация.

Нагрев проводят различными методами. Заготовки помещают в металлические формы или закатывают в ткань. Полученные конструкции укладывают в печь разогретую до 130 – 140 градусов Цельсия. В целях повышения эффективности вулканизации в печи может быть создано избыточное давление.

Сформированные заготовки могут быть уложены в автоклав, в котором находиться перегретый водяной пар. Либо их помещают в нагреваемый пресс. По сути, этот метод наиболее распространен на практике.

Свойства каучука прошедшего вулканизацию зависят от множества условий. Именно поэтому вулканизацию относят к самым сложным операциям, применяемым в производстве резины. Кроме того, немаловажную роль играет и качество сырья и метод его предварительной обработки. Нельзя забывать и об объеме добавляемой серы, температуры, продолжительность и метод вулканизации. В конце концов, на свойства готового продукта оказывает и наличие примесей разного происхождения. Действительно наличие многих примесей позволяет выполнить правильную вулканизацию.

В последние годы в резиновой промышленности стали использовать ускорители. Эти вещества добавленные в каучуковую смесь ускоряют протекающие процессы, снижают энергозатраты, другими словами эти добавки оптимизируют обработку заготовки.

При реализации горячей вулканизации на воздухе необходимо присутствие свинцовой окиси, кроме того может потребоваться присутствие свинцовых солей в купе с органическими кислотами или с соединениями которые содержат кислотные гидроокислы.

В качестве ускорителей применяют такие вещества как:

  • тиурамидсульфид;
  • ксантогенаты;
  • меркаптобензотиазол.

Вулканизация, проводимая под воздействием водяного пара может существенно сократиться если использовать такие химические вещества, как щелочи: Са(ОН)2, MgO, NaOH, КОН, или соли Na2CО3, Na2CS3. Кроме того, ускорению процессов поспособствуют соли калия.

Существуют и органические ускорители, это амина, и целая группа соединений, которые не входят в какую-либо группу. Например, это производные от таких веществ как амины, аммиак и ряд других.

На производстве чаще всего применяют дифенилгуанидин, гексаметилентетрамин и многие другие. Не редки случаи, когда для усиления активности ускорителей используют окись цинка.

Кроме добавок и ускорителей не последнюю роль играет и окружающая среда. К примеру, наличие атмосферного воздуха создает неблагоприятные условия для проведения вулканизации при стандартном давлении. Кроме воздуха, отрицательное воздействие оказывают угольный ангидрид и азот. Между тем, аммиак или сероводород оказывают положительной воздействие на процесс вулканизации.

Процедура вулканизации придает каучуку новые свойства и модифицирует существующие. В частности, улучшается его эластичность и пр. контролировать процесс вулканизации можно контролировать, постоянно замеряя изменяемые свойства. Как правило, для этого используют определение усилия на разрыв и растяжение на разрыв. Но эти метод контроля не отличаются точностью и его не применяют.

Резина как продукт вулканизации каучука

Техническая резина – это композиционный материал, содержащий в своем составе до 20 компонентов, обеспечивающих различные свойства этого материала. Резину получают путем вулканизации каучука. Как отмечалось выше, в процессе вулканизации происходит образование макромолекул, обеспечивающие эксплуатационные свойства резины, так обеспечивается высокая прочность резины.

Главное отличие резины от множества других материалов тем, что она обладает способностью к эластичным деформациям, которые могут происходить при разных температурах, начиная от комнатной и заканчивая куда более низкими. Резина значительно превышает каучук по ряду характеристик, например, ее отличает эластичность и прочность, стойкость к температурным перепадам, воздействию агрессивных сред и многое другое.

Цемент для вулканизации

Цемент для вулканизации используют для операции самовулканизации, она может начинаться с 18 градусов и для горячей вулканизации до 150 градусов. Этот цемент не включает в свой состав углеводороды. Существует также цемент типа ОТР, используемый для нанесения на шероховатые поверхности внутри шин, а также на Тип Топ RAD- и PN-пластыри серии OTR с увеличенным временем высыхания. Применение такого цемента позволяет достичь длительных сроков эксплуатации восстановленных шин, применяемых на специальной строительной технике с большим пробегом.

Технология горячей вулканизации шин своими руками

Для выполнения горячей вулканизации покрышки или камеры понадобится пресс. Реакция сварки каучука и детали происходит за определенный период времени. Это время зависит от размера ремонтируемого участка. Опыт показывает, что для устранения повреждения глубиной в 1 мм, при соблюдении заданной температуры, потребуется 4 минуты. То есть для ремонта дефекта глубиной в 3 мм, придется затратить 12 минут чистого времени. Подготовительное время в расчет не принимаем. А между тем выведение вулканизационного устройства в режим, в заисимости от модели может занять порядка 1 часа.

Температура, необходимая для проведения горячей вулканизации лежит в пределах от 140 до 150 градусов Цельсия. Для достижения такой температуры нет необходимости в использовании промышленного оборудования. Для самостоятельного ремонта шин вполне допустимо применение домашних электробытовых приборов, к примеру, утюга.

Устранение дефектов автомобильной покрышки или камеры при помощи устройства для вулканизации – это довольно трудоемкая операция. У него существует множество тонкостей и деталей, и поэтому рассмотрим основные этапы ремонта.

  1. Для обеспечения доступа к месту повреждения необходимо покрышку снять с колеса.
  2. Зачистить рядом с местом повреждения резину. Ее поверхность должна стать шероховатой.
  3. С применением сжатого воздуха обдуть обработанное место. Корд, появившийся наружу необходимо удалить, его можно откусить кусачками. Резина должна быть обработана специальным составом для обезжиривания. Обработка должна быть проведена с двух сторон, снаружи и изнутри.
  4. С внутренней стороны, на место повреждения должна быть уложена заранее подготовленная в размер заплатка. Укладку начинают со стороны борта покрышки в сторону центра.
  5. С наружной стороны на место повреждения необходимо положить куски сырой резины, нарезанные на кусочки по 10 – 15 мм, предварительно их необходимо прогреть на плите.
  6. Уложенный каучук надо прижать и разровнять по поверхности шины. При этом надо следить за тем, что бы слой сырой резины был выше рабочей поверхности камеры на 3 – 5 мм.
  7. Через несколько минут, с использование УШМ (угловая шлифмашина), необходимо снять слой наложенной сырой резины. В том случае, если оголенная поверхность рыхлая, то есть в ней присутствует воздух, всю нанесенную резину требуется убрать и операцию нанесения каучука повторить. Если в ремонтном слое нет воздуха, то есть, поверхность ровная и не содержит пор, ремонтируемую деталь, можно отправлять под разогретый до указанной выше температуры.
  8. Для точного расположения шины на прессе имеет смысл пометить центр дефектного места мелом. Для предотвращения прилипания нагретых пластин к резине, между ними надо проложить плотную бумагу.

Вулканизатор своими руками

Любое устройство для горячей вулканизации должно содержать два компонента:

  • нагревательный элемент;
  • пресс.

Для самостоятельного изготовления вулканизатора могут потребоваться:

  • утюг;
  • электрическая плитка;
  • поршень от ДВС.

Вулканизатор, который изготовлен своими руками, необходимо оснастить его регулятором, который сможет его выключить по достижении рабочей температуры (140-150 градусов Цельсия). Для эффективного прижима можно использовать обыкновенную струбцину.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

1.1. Развитие методов и приборов определения степени вулканизации и вулканизационных характеристик

1.2. Метод вибрационной реометрии

1.3. Возможности использования результатов реометрических испытаний

1.4. Усовершенствованные модели вибрационных реометров

1.5. Математические основы интерпретации кинетических кривых

2. МЕТОДЫ И ОБЪЕКТЫ ИССЛЕДОВАНИЯ

2.1. Программное обеспечение количественной интерпретации кинетических кривых процесса вулканизации

2.1.1. Система Table Curve и ее использование для количественной интерпретации кинетических кривых

2.1.2. Система Table Curve 3D

2.1.3. Характеристика интегрированной системы MatLab

2.2. Объекты исследования 63 ф 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1. Анализ воспроизводимости кинетических кривых процесса вулканизации

3.2 Анализ основных эмпирических моделей для количественной интерпретации кинетических кривых процесса вулканизации

3.2.1. Интегральные кривые

3.2.2. Дифференциальные кривые 100 ^ 3.2.3. Кривые модуля потерь

3.3. Кинетические модели

3.4. Влияние рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации

3.4.1. Температурная зависимость кинетических кривых процесса вулканизации

3.4.2. Влияние рецептурных факторов на характер кинетических кривых процесса вулканизации

Рекомендованный список диссертаций

  • Исследование кинетики вулканизации диеновых каучуков комплексными структурирующими системами 2000 год, кандидат химических наук Молчанов, Владимир Иванович

  • Развитие научных основ технологии по созданию и переработке обувных термопластичных резин методом динамической вулканизации 2007 год, доктор технических наук Карпухин, Александр Александрович

  • Моделирование неизотермической вулканизации автомобильных шин на основе кинетической модели 2009 год, кандидат технических наук Маркелов, Владимир Геннадьевич

  • Алгоритмическо-информационное обеспечение системного анализа автоматизированных химико-технологических процессов структурирования многокомпонентных эластомерных композитов 2017 год, кандидат технических наук Кузнецов, Андрей Сергеевич

  • Автоматизированная система косвенной стабилизации разрывной прочности резинотехнических изделий 2009 год, кандидат технических наук Климов, Антон Павлович

Введение диссертации (часть автореферата) на тему «Количественная интерпретация кинетических кривых процесса вулканизации в системе организации рабочего места технолога-резинщика»

В последние годы появилась целая серия новых программных продуктов, позволяющих технологу решать задачи, постановка которых ранее была невозможна.

Например, методы планирования эксперимента уже давно используются в работах технологов-резинщиков, но наиболее часто применявшиеся приемы описания почти стационарной области опирались исключительно на построение полиномов второй и реже третьей степени. Сейчас такие задачи можно решать гораздо более эффективными способами, получая модели, параметры которых можно интерпретировать на основе физико-химических -представлений.

Появилась также возможность принципиально иного подхода к формированию баз данных, связанных с хранением и использованием информации, необходимой для разработки режимов вулканизации изделий и контроля технологических процессов, и в первую очередь процесса смешения.

Использование новых программных продуктов в работе технолога-резинщика практически избавляет его от необходимости хранения информации на бумажных носителях и может рассматриваться как один из важных компонентов его рабочего места.

Целью диссертационной работы: явилось формирование основных приемов рациональной интерпретации кинетических кривых процесса вулканизации и создание для этого комплекса программ-модулей, позволяющих специалисту работать на действительно современном уровне.

Для достижения этой цели были решены следующие задачи.

Проведение статистического анализа количественных характеристик, получаемых при обработке кинетических кривых процесса вулканизации.

Разработка способа наиболее информативного представления экспериментальных данных при обработке кинетических кривых и написание соответствующей программы.

Рассмотрение возможных вариантов моделей для количественной интерпретации интегральных и дифференциальных кинетических кривых, проведение статистического анализа этих моделей, разработка рекомендаций об условиях их применения и способов построения моделей при наличии процессов вторичного характера, протекающих при вулканизации.

Анализ взаимосвязей параметров этих моделей и вулканизационных характеристик. Разработка на основе этого способов воссоздания кинетической кривой по вулканизационным характеристикам, исключив тем самым необходимость хранения информации на бумажных носителях.

Обоснование необходимости получения дифференциальных кинетических кривых (кривых скорости), анализ возможности классификации этих кривых и эффективности использования статистических моментов для осмысления результатов кинетических исследований.

Проведение сопоставительного анализа реограмм и кривых модуля потерь, оценка возможности предсказания вулканизационных характеристик по кривым модуля потерь.

Анализ возможности получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью?эмпирических моделей. Оценка возможности расчета константы скорости и порядка реакции при такой аппроксимации.

Рассмотрение влияния- рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации и> оценка преимущества применения контурных графиков для анализа этого влияния.

Разработка методов решения перечисленных проблем является актуальной для специалистов резиновой промышленности.

Научная новизна.

1. Впервые показана взаимосвязь параметров моделей- для описания реограмм и кинетических кривых скорости и их связь с вулканизационными характеристиками. На основе этого разработан способ построения кинетических кривых по вулканизационным характеристикам.

2. На основе анализа влияния рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации разработан метод построения контурных графиков, облегчающих принятие решений при планировании новых и оценке существующих режимов вулканизации.

3. Показано, что наряду с вулканизационными характеристиками целесообразно вычислять статистические моменты кривых скорости, которые характеризуют форму кривой в целом, а не фиксируют отдельные точки на этой кривой.

4. Впервые показана возможность получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью эмпирических моделей.

Практическая значимость.

1. На основе разработанного способа адекватного воссоздания кинетической кривой по вулканизационным характеристикам исключается необходимость хранения информации кинетического характера (например, реограмм) на бумажных носителях.

2. Использование контурных графиков в координатах «продолжительность вулканизации - уровень рецептурно-технологического фактора» необходимо для принятия правильных решений при оптимизации рецептуры и планировании новых и оценке существующих режимов вулканизации.

3. Показана целесообразность построения и анализа дифференциальных кинетических кривых скорости, получаемых на реометрах нового поколения, поскольку форма этих кривых в большей степени (по сравнению с реограммами) чувствительна к изменению рецептурно-технологических факторов.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

Похожие диссертационные работы по специальности «Технология и переработка полимеров и композитов», 05.17.06 шифр ВАК

  • Повышение эффективности теплообменных процессов при термообработке гуммировочных покрытий с использованием СВЧ-энергии 2004 год, кандидат технических наук Шестаков, Демид Николаевич

  • Высокоэластичные композиционные материалы на основе смеси каучуков 2000 год, кандидат химических наук Халикова, Саодатхон

  • Ингредиенты полифункционального действия на основе азометинов для технических резин 2010 год, доктор технических наук Новопольцева, Оксана Михайловна

  • Оптимизация тепловых состояний химически реагирующих твердофазных объектов 1997 год, доктор физико-математических наук Журавлев, Валентин Михайлович

  • Моделирование и расчет нестационарных тепловых процессов индукционного нагрева при производстве резинотехнических изделий 2012 год, кандидат технических наук Карпов, Сергей Владимирович

Заключение диссертации по теме «Технология и переработка полимеров и композитов», Кашкинова, Юлия Викторовна

1. Статистический анализ количественных характеристик, получаемых при обработке реограмм, показал, что эти характеристики определяются с большой дисперсией воспроизводимости. Особенно это касается кинетических параметров, связанных с величиной степени вулканизации (минимальный крутящий момент и его приращение), и в меньшей степени - параметров, связанных с продолжительностью процесса (время начала вулканизации, время 90 и 50% -го превращения).

2. Впервые разработан метод построения контурных 1рафиков, облегчающих принятие решений при планировании новых и оценке существующих режимов вулканизации. Метод основан на создании моделей, характеризующих зависимость степени или скорости вулканизации от времени; параметры этих моделей являются произвольными функциями одного или нескольких рецегпурно-технолошческих факторов. Разработана про1рамма для реализации этого метода.

3. Предложена группа моделей для адекватной количественной интерпретации интегральных и дифференциальных кинетических кривых; параметры этих моделей могут быть истолкованы с позиций физико-химических представлений. В ряде случаев кинетические кривые могут быть описаны путем суммирования таких моделей.

4. Показана взаимосвязь параметров интегральных и дифференциальных моделей между собой и их связь с вулканизационными характеристиками. На основе этого впервые разработан способ адекватного воссоздания кинетической кривой по вулканизационным характеристикам. Это дает возможность исключить необходимость хранения информации на бумажных носителях.

5. Показана целесообразность построения и анализа дифференциальных кинетических кривых скорости процесса вулканизации. Их форма в большей степени чувствительна к изменению рецептурно-технологических факторов, нежели в случае интегральных кривых.

6. На значительном экспериментальном массиве (88 кривых) показано, что дифференциальные кинетические кривые процесса вулканизации при их интерпретации в качестве функций распределения могут быть отнесены к типу IV семейства кривых Пирсона, но в большинстве случаев адекватно описываются моделью 8062 по каталогу программы Table Curve, являющейся дифференциальной формой интегральной модели 8092.

7. Показано, что наряду с вулканизационными характеристиками целесообразно вычислять статистические моменты кривых скорости, которые характеризуют форму кривой в целом, а не фиксируют отдельные точки на этой кривой.

8. Показано, что при отсутствии реверсии вулканизационные характеристики можно вычислить путем анализа кривой модуля потерь.

9. Впервые показана возможность получения дифференциального уравнения, характеризующего процесс вулканизации, на основе аппроксимации интегральной кривой с помощью эмпирических моделей. В этом случае константа скорости и порядок реакции могут быть выражены через параметры модели и, следовательно, через вулканизационные характеристики.

10. Рассмотрено влияние рецептурно-технологических факторов на характер кинетических кривых процесса вулканизации и обоснованы преимущества применения контурных графиков для анализа этого влияния. Показано, что результаты кинетических исследований процесса вулканизации целесообразно представлять в виде множества линий равного уровня для ряда вулканизационных характеристик и кинетических параметров. Разработана классификация диаграмм вулканизации на основе теории графов.

Список литературы диссертационного исследования кандидат технических наук Кашкинова, Юлия Викторовна, 2005 год

1. Уральский M.JL, Горелик Р.А., Буканов A.M. Контроль и регулирование технологических свойств резиновых смесей. - Ml: Химия, 1983. - 128 с.

2. Махлис Ф.А., Федюкин Д.Л., Терминологический справочник по резине. -М.: Химия, 1989. -400с.

3. Догадкин Б.А., Донцов А.А., ШершневВ.А. Химия эластомеров. - М.: Химия, 1981.-376 с.

4. Корнев А.Е., Буканов A.M., Шевердяев О.Н. Технология эластомерных материалов. М.: Эксим, 2000. - 288 с.

5. Лукомская А.И., Баденков П.Ф:, Кеперша Л.М. Расчеты и прогнозирование режимов вулканизации резиновых изделий. - М.: Химия, 1978. 280 с.

6. Спутник резинщика. / Под ред. Л.М. Горбунова. Л.: Госхимиздат, 1932. - 464 с.

7. Дж. Р.Скотт Физические испытания каучука и резины.-М.: Химия, 1968.-316 с.

8. Вулканизация эластомеров: Пер. с англ. / Под ред. Г. Аллигера, ф И. Сьетуна. М.: Химия, 1967. - 428 с.

9. ASTM Standart D"412 98а, «Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension.», Annual Book of ASTM Standards, Volume 09.01.

10. Little L. How to- use DSC to measure state-of-cure for elastomers. // Elastomerics. 1988. - 121, № 2. - P. 22-25.

11. Brasier D. W. Applicattions of thermal analytical procedures in the study of elastomers and elastomer systems // Rubber chemistry and technology. - 1980. - 53, № 3 - P.437-511.

12. Берштейн B.A., Егоров B.M. Дифференциальная сканирующая ®1 калориметрия в физикохимии полимеров. Л.: Химия, 1990. - 256 с.

13. Уэндландт У. Термические методы анализа.: Пер. с англ. - М.: Мир, 1978.-526 с.

14. Агаянц И. М., Пять столетий каучука и резины. М.: Модерн, 2002. - 432 с.

15. Новаков И.А., Новопольцева О.М., Кракшин М.А. Методы оценки-и регулирования* пластоэластических и вулканизационных свойств эластомеров и композиций на их основе. - М.: Химия, 2000. - 240с.

16. ГОСТ 10722-76 Каучуки и резиновые смеси. Метод определения вязкости и способности к преждевременной вулканизации. // М.: Изд-вол стандартов. - 1976., 11 с.

17. ASTM D1646-99 Standard Test Methods for Rubber Viscosity, Stress Relaxation, and Pre-Vulcanization Characteristics (Mooney Viscometer). -ASTM International, 10-May-1999,11 p.

18. Орловский П.Н., Лукомская А.И., Цыдзик M.A., Богатова С. К. Оценка технологических свойств сажевых резиновых смесей на сдвиговом пластометре. // Каучук и резина. 1960. - №7. - С. 21-28.

19. Peter J. and Heidemann W. A new method for determining the optimum cure of rubber compounds. // Kautschuk und Gummi. 1958. - №11. - P. 159 - 161.

20. Blow С. M. Rubber technology and manufacture. Institution of rubber Industry: 1971.-527 p.

21. Lautenschlaeger F.K., Myhre M. Classification of properties of elastomers using the «optimum property concept». // Journal of applied polymer science. -1979. 24, № 3 - P. 605-634.

22. Claxton W. E., Conant F. S. and Liska J. W., Evaluation of progressive ф changes in elastomer properties during vulcanization. // Rubber Chemistry and"

23. Technology. 1961. V. 34, P. 777.

24. Decker G. E., Wise R. W., and Guerry D., Ail oscillating disk rheometer for measuring dynamic properties during vulcanization. // Rubber Chemistry and Technology. 1963. V.36, P. 451.

25. Greensmith H.W., Watson A.A. Studies on the curing characteristics of natural rubber. // Proceedings of natural rubber conference. Part II - Kuala Lumpur. -1968 P. 120 - 134.

26. Sezna J.A. The use of processability tests for quality assurance. // Rubber world. 1989. - 199, №4. P. 88-94.

27. ГОСТ 12535-84. Смеси резиновые. Метод определения вулканизационныххарактеристик на вулкаметре. // М.: Изд-во стандартов. -1984.13 с.

28. ASTM Standard 2084-93, Standard Test Method for Rubber Property - Vulcanization Using Oscillating Disk Cure Meter, Appendix X2, History of the Oscillating Disk Cure Meter, Section«X2.6 and Table X2.1.

29. JS JSO 3417-78.Row Rubber Measurement of Cure Characteristics with the Oscillating Curometer.- 1981.

30. ISO 6502 Rubber-Measurement of vulcanization characteristics with rotorless curemetrs. Second edition, 1991.

31. Мак-Келви Д. M. Переработка полимеров: Пер. с англ. М.: Химия, 1968.-496 с.

32. Приборы и методы оценки свойств резиновых смесей, перерабатываемых литьем под давлением / Галле А. П., Конгаров Г. С., Федоров Е. Г. Поздрашенкова Г.И. -М.: ЦЬЖИТЭнефтехим, 1981. -76 с.

33. Алфрей Т. Механические свойства высокополимеров: Пер. с англ. М.:1982.-320 с.

34. Monsnto Rheometer 100, Description and application. Technical Bulletin No IS-1, 18 p.

35. Подалинский A.B., Юрчук Т. E. Ковалев H. В. Об оценке стандартности каучука СКИ-3 методом вулкаметрического анализа. // Каучук и резина.1983. №10. - с.27-32.

36. Kato Н., Fujuta Н Some novel systems for crosslinking polychloroprene. // Rubber Chemistry and Technology 1971. -V. 48. - p. 19-25.

37. Резцова E.B., Виленц Ю: E. Влияние технологических факторов переработки резиновых смесей на основе СКИ-3 и СКМС-ЗОАРКМ-15 на кинетику их вулканизации и динамические характеристики резин.// Каучук и резина. 1971. -№12. - с.15-18.

38. Anand R., Blacly D.C., Lee K.S. Correlation between Monsanto reometer torque and concentration of crosslinks for elastomers networks. International Rubber Conference «Rubbercone», 1982 June 2-4.

39. Вольфсон Б. JI, Горелик Б. М. Кучерский А. М. Определение условно-равновесного модуля резин на вулкаметрах с биконическим ротором. // Каучук и резина.- 1977.-N6.- с. 57-58.

40. Вольфсон Б. Л., Горелик Б. М. Определение модуля сдвига эластомеров на вулкаметрах с биконическим ротором. // Каучук и резина.- 1977.- N1.- С. 51-54.

41. Чарлсби А. Ядерные излучения и полимеры: Пер. с англ. - М.: Издатинлит, 1962. 210 с

42. Подалинский А. В. Федоров Ю. Н. Кропачева Е. Н. Изучение температурной зависимости скорости вулканизации альтернантного сополимера бутадиена с пропиленом. // Каучук и резина, -1982.- N2.- С. 16-19.

43. Догадкин Б. А. Химия эластомеров. М.: Химия, 1972. - 381 с.

44. Юровски В., Кубис Е. Метод определения- параметров процессов структурирования и деструкции резины при вулканизации. //Каучук и резина.-1980.-N8.-C.60-62.

45. Оборудование- для определения характеристик эластомеров и резин фирмы «Goettfert».

46. Web сайт // www.goettfert.com/index.html

47. Мак Кейб К. Усиление эластомеров: Пер. с англ. / Под ред. Дж- Крауса. -М.: 1968.-С. 188-200.

48. Печковская К. А. Сажа как усилитель каучуков. М.: Химия, 1968. - 215с.

49. Rohu C.L., Starita J.N. Using dynamic rheological measurements for real time on-line and off-line quality control. // Rubber world. -1986. -194, № 6. P. 28-33.

50. Захаренко H.B., Козоровицкая Е.И. Палкина Ю.З., Суздальницкая Ж.С. Способы оценки свойств резиновых смесей. ЦНИИТЭнефтехим; серия: производство РТИ и АТИ. Выпуск №3 1988 г., 52 стр.

51. Шевчук В.П., Кракшин М.А., Делаков Е.П., Терехова Е.А. Автоматизированное рабочее место разработчика рецептуры в производстве РТИ. // Каучук и резина. 1987. - №2.-С. 41-43.

52. Сарле X., X. Вандорен П., Вингриф* С.М. Миникомпьютер для технологов резинщиков // Междунар. конф. по каучуку и резине. М.,ф 1984.- С.39.- (Препринты).

53. Смит М. А., Роебух X. Современный контроль качества резиновых смесей.// Междунар. конф. по каучуку и резине.- М., 1984.- С.51,-(Препринты).

54. Pawlowski Н. A. and Perry A. L., «А New Automatic Curemeter» presented at the RPI Rubber Conference 84, Birmingham, U.K., Mar. 1984;

55. Robert I. Barker, David P. King and Henry A. Pawlowski (to Monsanto Co.) U.S. 4,552,025 (Nov. 12,1985);

56. Thomas D. Masters and Henry A. Pawlowski (to Monsanto Co.) U.S. 4,794,788 (Jan. 3, 1989);

57. Ф 55. Henri A. G. Burhin, David P. J. King and Willy A. G. Sprentels (to Monsanto

59. Measuring visco-elastic properties using the MDR 2000 rheometer. Resent advances and applications. Technical notes to the industry. Monsanto instruments and equpment. REF: LLN 89/4.

60. Web-сайт// www.komef.ru/gibrheometre.shtml

61. Оборудование для определения вулканизационных характеристик XDR® Reometers & Viscometers by CCSi. ]

62. Web-сайт// www.ccsi-mc.com/html-instruments.htm

63. Jack С. Warner and Tobin L., «Innovations in Cure Meter and Mooney Viscometer Technology», presented at the 148th meeting of the American Chemical Society in Cleveland, Ohio October 17-20, 1995, Rubber World.1997. - V.215, №4.

64. Andries van Svaaij. The rubber process analyzer 2000. // Natural Rubber. -23, 3-th quarter 2001. - p. 2-4.

65. Роджер Э., Седов A.C., Неклюдов Ю.Г., Производственные версии приборов и программного обеспечения ф. «Альфа Текнолоджис». - XI международная научно-практическая конференция «Резиновая промышленность. Сырье, материалы, технология.» Москва, 2005. 224с.

66. Оборудование фирмы Alpha Technologies.

67. Web-сайт//www.alpha-technologies.com/instruments/rheometry.htm

68. Митропольский А.К. Техника статистических вычислений. - М.: Наука, 1971.-576 с.

69. Агаянц И.М., Орлов A.JI. Планирование эксперимента и анализ данных: методические указания к лабораторным работам. - М.: ИПЦМИТХТ,1998, 143 с.

70. Сиськов В.И. Корреляционный анализ в экономических исследованиях. М.: Статистика, 1975. - 168 с.

71. Браунли К.А. Статистические исследования в производстве: Пер. с англ. / Под ред. А.Н. Колмогорова. М.: Издатинлит, 1949. - 228 с.

72. Лукомский Я.И: Теория корреляции и ее применение к анализу производства. М.: Госстатиздат, 1958. - 388 с.

73. Крамер Г. Математические методы статистики: Пер. с англ. М.: Мир, 1975 .-648 с.

74. Ануфриев И.Е. Самоучитель MatLab 5.3/б.х. СПб.: БХВ-Петербург, 2002.-736 с.

75. КашкиноваТО.В., Агаянц И.М. Формы представления экспериментальных данных при изучении кинетики процесса вулканизации. // 16-й симпозиум «Проблемы шин и резинокордных композитов»: ФГУП «НИИШП» Москва, 2005. - с. 187-194.

76. The Mosanto MDR 2000E in testing of cure kinetics a tools to improve cured rubber article quality H.B. Burhin, Louvain-la-Neuve (Belgium)/ Kautschuk und Gummi, Kunstst. -1992, -45, № 10, -p. 866-870

77. Measuring visco-elastic properties using the MDR 2000 rheometer, Louvain-la-neuve, 1989, 20 p:

78. Вараксин M.E., Кучерский A.M., Кузнечикова В.В., Радаева Г.И. Новые приборы и методы оценки свойств резиновых смесей: серия: производство РТИ и АТИ. Выпуск №3 М., ЦНИИТЭнефтехим, 1989 г. - 126 с.

79. Агаянц И.М., Кашкинова Ю.В. Анализ воспроизводимости реометрических кривых процесса вулканизации. // 9-я научно-практическая конференция «Резиновая промышленность. Сырье и материалы»: ФГУП «НИИШП» Москва, 2002. - с.7-10.

80. Агаянц И.М., Кашкинова Ю.В. Эмпирические модели кинетических кривых процесса вулканизации. // Международная конференция по каучуку и резине: Тез. Докл. Москва, 2004. - с.28-29:

81. Агаянц И.М., Кашкинова Ю.В. Количественная интерпретация кинетических кривых. // Ученые записки МИТХТ. Выпуск 11, 2004. с. 3-8.

82. Кашкинова Ю.В., Агаянц-И.М. Влияние рецептурно-технологических факторов на вулканизационные характеристики и кинетические параметры процесса вулканизации. // Ученые записки МИТХТ. Выпуск 13, 2005. - с. 34-38.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

Выводы

На основе системного анализа процесса гуммирования оцинкованной полосы определены модели и методы, применение которых необходимо для реализации метода управления: имитационная модель процесса сушки полимерного покрытия, метод оптимизации технологических параметров процесса полимеризации на основе генетического алгоритма и модель нейро-нечёткого управления процессом.

Определено, что разработка и реализация метода управления процессом вулканизации оцинкованной полосы на агрегате полимерных покрытий на основе нейро-нечетких сетей является актуальной и перспективной научно-технической задачей с точки зрения экономической выгоды, сокращения издержек и оптимизации производства.

Установлено, что процесс вулканизации оцинкованной полосы в печах агрегата покрытий металла является многосвязным объектом с распределённостью параметров по координате, работающим в условиях нестационарности и требует системного подхода к изучению.

Определены требования, предъявляемые к математическому обеспечению системы управления многосвязными тепловыми объектами агрегата покрытий металла: обеспечение функционирования в режиме непосредственной связи с объектом и в режиме реального времени, разнообразия выполняемых функций при их относительной неизменности во время эксплуатации, обмена информацией с большим количеством её источников и потребителей в процессе решения основных задач, работоспособности в условиях, ограничивающих время расчета управляющих воздействий.

МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СИСТЕМЫ НЕЙРО-НЕЧЁТКОГО УПРАВЛЕНИЯ МНОГОСВЯЗНЫМИ ТЕПЛОВЫМИ ОБЪЕКТАМИ АГРЕГАТА ГУММИРОВАННЫХ ПОКРЫТИЙ МЕТАЛЛА

Системный анализ управления многосвязными тепловыми объектами агрегата гуммированных покрытий

Концептуальное проектирование - начальная стадия проектирования, на которой принимаются решения, определяющие последующий облик системы, и проводятся исследование и согласование параметров созданных решений с возможной их организацией. В настоящее время становится постепенно осознанным то, что для построения систем на качественно ином уровне новизны, а не просто их модернизации, необходимо быть вооруженным теоретическими представлениями о том, в каком направлении развиваются системы. Это необходимо для организации управления этим процессом, что повысит как показатели качества этих систем, так и эффективность процессов их проектирования, функционирования и эксплуатации .

На данном этапе необходимо сформулировать задачу управления, из которой получим задачи исследования. После анализа процесса полимеризации оцинкованной полосы как объекта управления необходимо определить границы предметной области, представляющие интерес при построении модели управления процессом, т.е. определиться с требуемым уровнем абстракции моделей, которые предстоит построить.

Важнейшим приемом системного исследования является представление любых сложных систем в виде моделей, т.е. применение метода познания, в котором описание и исследование характеристик и свойств оригинала заменяется описанием и исследованием характеристик и свойств некоторого другого объекта, который в общем случае имеет совершенно другое материальное или идеальное представление. Важно, что модель отображает не сам объект исследования в наиболее близком к оригиналу виде, а только те его свойства и структуры, которые в большей степени интересуют для достижения поставленной цели исследования.

Задача управления заключается в задании таких значений параметров процесса вулканизации оцинкованной полосы, которые позволят достичь максимального коэффициента прилипания при минимальном расходе энергоресурсов.

К качеству произведенного предварительно окрашенного проката предъявляется ряд требований, которые описаны в ГОСТ, перечисленных в разделе 1.3. Процесс сушки в печах агрегата гуммированных покрытий влияет только на качество прилипания к подложке. Поэтому такие дефекты как неравномерность покрытия, отклонение по блеску и рытвины в данной работе не рассматриваются.

Для осуществления процесса сушки полимерного покрытия необходимо знать следующий набор технологических параметров: температуры 7 печных зон (Tз1…Tз7), скорость линии (V), плотность и теплоёмкость металлической подложки (, с), толщина и начальная температура полосы (h, Tнач.), интервал температур полимеризации наносимой краски ().

Эти параметры в производстве принято называть рецептом.

Такие параметры как мощность вентиляторов, установленных в печных зонах, объем подводимого чистого воздуха, параметры взрывоопасности лаков исключаются из рассмотрения, так как они влияют на скорость прогрева зон перед сушкой и концентрацию взрывоопасных газов, которые в данной работе не раскрываются. Их регулирование осуществляется отдельно от управления самим процессом вулканизации.

Определим задачи исследования, которые необходимо выполнить для достижения цели управления. Отметим, что текущее состояние системного анализа предъявляет особые требования к решениям, принимаемым на основе исследования полученных моделей. Мало просто получить возможные решения (в данном случае, значения температур печных зон) - необходимо, чтобы они были оптимальны. Системный анализ, в частности позволяет предложить методики принятия решений по целенаправленному поиску приемлемых решений путем отбрасывания тех из них, которые заведомо уступают другим по заданному критерию качества. Цель его применения к анализу конкретной проблемы состоит в том, чтобы, применяя системный подход и, если это возможно, строгие математические методы, повысить обоснованность принимаемого решения в условиях анализа большого количества информации о системе и множества потенциально возможных решений .

В связи с тем, что на данном этапе нам известны только входные и выходные параметры моделей, опишем их с помощью подхода с позиции «чёрного ящика».

Первая задача, которую необходимо решить, - это построить имитационную модель процесса сушки покрытия, т.е. получить математическое описание объекта, использующееся для проведения экспериментов на компьютере в целях проектирования, анализа и оценки функционирования объекта. Это нужно, чтобы определить, до какой величины повысится температура поверхности металла (Тпов. вых.) при выходе из печи при заданных значениях скорости полосы, толщины, плотности, теплоёмкости и начальной температуры металла, а также температур печных зон. В дальнейшем сравнение величины, полученной на выходе этой модели, с температурой полимеризации краски позволит сделать вывод о качестве прилипания покрытия (рисунок 10).

Рисунок 10 - Концептуальная имитационная модель процесса сушки покрытия

Вторая задача - разработать метод оптимизации технологических параметров процесса вулканизации оцинкованной полосы. Для её решения необходимо осуществить формализацию критерия качества управления и построить модель оптимизации технологических параметров. В связи с тем, что регулирование температурного режима осуществляется за счёт изменения температур печных зон (Tз1…Tз7), данная модель должна оптимизировать их значения (Tз1опт…Tз7опт) согласно критерию качества управления (рисунок 11). Данная модель на вход получает и температуры вулканизации, поскольку без них невозможно определить качество прилипания краски к металлической подложке.


Рисунок 11 - Концептуальная модель оптимизации технологических параметров

Технологически процесс вулканизации представляет собой преобразование в резину «сырого» каучука. Как химическая реакция, он предполагает объединение линейных каучуковых макромолекул, легко теряющих стабильность при внешнем воздействии на них, в единую вулканизационную сетку. Она создается в трехмерном пространстве благодаря поперечным химическим связям.

Такая как бы «сшитая» структура наделяет каучук дополнительными прочностными показателями. Улучшаются его твердость и эластичность, морозо- и теплостойкость при снижении показателей растворимости в органических веществах и набухания.

Полученная сетка отличается сложным строением. Она включает не только узлы, соединяющие пары макромолекул, но и те, что объединяют одновременно несколько молекул, а также поперечные химические связи, представляющие собой как бы «мостики» между линейными фрагментами.

Их образование происходит под действием специальных агентов, молекулы которых частично выступают строительным материалом, химически реагируя друг с другом и макромолекулами каучука при высокой температуре.

Свойства материала

От вида примененного реагента во многом зависят эксплуатационные свойства полученной вулканизированной резины и изделий из нее. К таким характеристикам относят устойчивость к пребыванию в агрессивных средах, скорость деформирования при сжатии или повышении температуры, сопротивляемость термоокислительным реакциям.

Возникающие связи необратимо ограничивают подвижность молекул под механическим воздействием, одновременно сохраняя высокую эластичность материала со способностью к пластическим деформациям. Структура и численность этих связей определяется методом вулканизации резины и использованными для нее химическими агентами.

Процесс протекает не монотонно, и отдельные показатели вулканизируемой смеси в своем изменении достигают своего минимума и максимума в разное время. Наиболее подходящее соотношение физико-механических характеристик получаемого эластомера называется оптимумом.

Вулканизируемый состав, помимо каучука и химических агентов, включает ряд дополнительных веществ, способствующих производству резин с заданными эксплуатационными свойствами. По назначению их делят на ускорители (активаторы), наполнители, мягчители (пластификаторы) и противостарители (антиокислители). Ускорители (чаще всего это оксид цинка) облегчают химическое взаимодействие всех ингредиентов резиновой смеси, способствуют сокращению расхода сырья, времени на его переработку, улучшают свойства вулканизаторов.

Наполнители, такие как мел, каолин, сажа, повышают механическую прочность, сопротивление износу, истиранию и другие физические характеристики эластомера. Пополняя объем исходного сырья, они тем самым уменьшают расход каучука и понижают себестоимость получаемого продукта. Мягчители добавляют для повышения технологичности обработки резиновых смесей, снижения их вязкости и увеличения объема наполнителей.

Также пластификаторы способны повышать динамическую выносливость эластомеров, стойкость к истиранию. Стабилизирующие процесс антиокислители вводятся в состав смеси, чтобы предупредить «старение» каучука. Разные комбинации этих веществ применяют при разработке специальных рецептур сырой резины для прогнозирования и корректировки процесса вулканизации.

Виды вулканизации

Чаще всего общеупотребимые каучуки (бутадиен-стирольный, бутадиеновый и натуральный) вулканизируют в сочетании с серой, нагревая смесь до 140-160°С. Этот процесс называется серной вулканизацией. В образовании межмолекулярных поперечных связей участвуют атомы серы. При добавлении в смесь с каучуком до 5% серы производят мягкий вулканизат, используемый для изготовления автомобильных камер, покрышек, резиновых трубок, мячей и т.п.

Когда присоединяется более 30% серы, то получается довольно жесткий, малоэластичный эбонит. В качестве ускорителей в этом процессе используют тиурам, каптакс и др., полноту действия которых обеспечивает добавление активаторов, состоящих из окислов металлов, как правило, цинка.

Еще возможна радиационная вулканизация. Ее проводят посредством ионизирующей радиации, применяя потоки электронов, излучаемых радиоактивным кобальтом. Такой процесс без использования серы способствует получению эластомеров, наделенных особой стойкостью к химическому и термическому воздействию. Для производства специальных видов резин добавляют органические перекиси, синтетические смолы и другие соединения при тех же параметрах процесса, что и в случае добавление серы.

В промышленных масштабах вулканизируемый состав, помещенный в форму, нагревают при повышенном давлении. Для этого формы помещают между нагретыми плитами гидропресса. При изготовлении неформовых изделий смесь засыпают в автоклавы, котлы или индивидуальные вулканизаторы. Нагревание резины для вулканизации в этом оборудовании проводится при помощи воздуха, пара, нагретой воды или высокочастотного электрического тока.

Крупнейшими потребителями резинотехнической продукции на протяжении многих лет остаются предприятия автомобильного и сельскохозяйственного машиностроения. Степень насыщенности их продукции изделиями из резины служит показателем высокой надежности и комфорта. Кроме того, детали из эластомеров часто используют при производстве монтажа сантехники, изготовлении обуви, канцелярских и детских товаров.